Home   |   Structure   |   Research   |   Resources   |   Members   |   Training   |   Activities   |   Contact

EN | PT

BrBRCEEn0104-530X2016000100146

BrBRCEEn0104-530X2016000100146

variedadeBr
ano2016
fonteScielo

O script do Java parece estar desligado, ou então houve um erro de comunicação. Ligue o script do Java para mais opções de representação.

Método de estimativa dos limites da carta de controle não paramétrica que monitora simultaneamente a média e variância

1 Introdução

A importância do controle estatístico de processo (CEP), como tema de pesquisa, pode ser visualizada na Figura 1, que mostra o crescimento do número de publicações indexadas na base de dados Web of Science, de 1956 a 2013. mais de meio século, o CEP tem desempenhado um papel fundamental no controle e melhoria da qualidade e produtividade de processos industriais (Baker & Brobst, 1996; Graves et al., 1999; Duarte & Saraiva, 2008), baseado, inicialmente, na carta de controle clássica de Shewhart, que pressupõe que os parâmetros estatísticos média e desvio padrão do processo sejam conhecidos.

A questão primária relativa ao CEP é compreender a variabilidade de uma característica da qualidade, estabelecer o controle do processo e promover sua melhoria (Woodall, 2000).

Em geral, se desconhece os parâmetros estatísticos, o que afeta a eficiência no uso desses gráficos de controle na detecção de uma causa especial, pois, normalmente, os limites de controle são calculados a partir de estimativas de tais parâmetros (Jensen et al., 2006; Castagliola et al., 2009; Castagliola & Maravelakis, 2011). Se os parâmetros estatísticos são desconhecidos, eles são estimados e os limites de controle são determinados a partir de k amostras de tamanho n, o que se denomina de fase I. Na fase II, extraem-se amostras de tamanho n do processo, buscando se verificar se este se encontra em estado de controle. Caso o valor da estimativa do parâmetro, calculado a partir da amostra, não esteja dentro dos limites de controle, o processo é admitido fora de controle, e uma provável causa assinalável deve ser identificada e ações corretivas tomadas para reestabelecer o seu status quo (Montgomery, 1992).

Pesquisas recentes têm avaliado o desempenho dos gráficos de controle, tanto na fase I como na fase II, quando os parâmetros são desconhecidos, com o propósito de estabelecer novos procedimentos que melhorem o desempenho desses gráficos e, assim, minimizar os riscos a (erro tipo I) e ß (erro tipo II) (Chen, 1997; Jones et al., 2001; Epprecht et al., 2005; Chakraborti & Human, 2006; Chakraborti, 2006; Castagliola et al., 2009; Costa et al., 2009; Ozsan et al., 2009; Costa et al., 2010; Trovato et al., 2010; Zhang & Castagliola, 2010; Boone & Chakraborti, 2011; Castagliola & Maravelakis, 2011; Costa & Machado, 2011; Zhang et al., 2011; Castagliola & Wu, 2012; Lee, 2013).

A medida de desempenho de um gráfico de controle na fase II, comumente utilizada, é a ARL (Average Run Lenght), que indica o número médio de amostras necessárias para detectar uma mudança nos parâmetros do processo. Assim, um tipo de gráfico de controle é considerado melhor que outro quando apresenta menor ARL na fase de monitoramento. Porém, caso o processo esteja sob controle, é desejável que o ARL seja o máximo possível. Um problema prático na aplicação dos gráficos de controle clássicos de Shewhart é que a sua eficiência (ARL) é afetada pela distribuição de probabilidade dos dados.

Quando a distribuição dos dados é assimétrica, os métodos não paramétricos se mostram mais eficientes (Montgomery, 2004; Chakraborti & Human, 2006).

Para Boone & Chakraborti (2011), as vantagens dos métodos não paramétricos são: eles requerem poucos pressupostos estatísticos sobre a distribuição dos dados e são relativamente fáceis de serem aplicados no chão de fábrica.

Os gráficos de controle tradicionais foram concebidos para monitorar dois parâmetros: uma medida de posição central e uma de dispersão, normalmente a média e o desvio padrão. As razões para o monitoramento desses dois parâmetros são encontradas em Box et al. (1978), Montgomery & Runger (2003) e McCracken & Chakraborti (2013).

Porém, tem tido destaque nas publicações científicas propostas para monitoramento simultâneo, em um único gráfico, desses dois parâmetros e, em especial, os gráficos de controle não paramétricos (McCracken & Chakraborti, 2013). Essa opção de gráfico facilita o seu uso pelos gerentes e operadores no chão de fábrica, pois, com um único parâmetro, é possível identificar a presença de causas especiais no processo, e, por ser não paramétrico, o torna livre do pressuposto da normalidade da distribuição de probabilidade.

Figura 1. Publicações sobre controle estatístico de processo extraídas da base Web of Science, para o período de 1956 a 2013 (Thomson Reuters, 2013).

O uso combinado das medidas de locação e escala foi analisado por Mukherjee & Chakraborti (2012), os quais definiram, por meio do uso de simulação computacional, os limites de controle (H, H1 e H2) para um conjunto de combinações de tamanhos de amostra para a fase 1 (m) e para a fase II (n). Porém, os resultados apresentados pelos autores estão limitados a um conjunto de valores de m e n, o que restringe o seu uso na prática.

Pesquisa bibliométrica, realizada na base Web of Science, indica que poucos estudos sobre o uso de técnicas estatísticas não paramétricas para o monitoramento de processos. A Figura 2 mostra, por meio da frequência acumulada, os registros de artigos publicados nos últimos trinta anos. Relações entre palavras-chave pertinentes aos estudos sobre métodos não paramétricos são encontradas na Figura 3; por exemplo, observe a coocorrência entre as palavras-chave NONPARAMETRIC com as palavras CUSUM, RUN LENGHT e DISTRIBUTION FREE.

A Figura 2 mostra um aumento nas pesquisas sobre o tema a partir de 2006, o que indica ser esse tema relativamente novo nas pesquisas sobre controle estatístico de processo. A Figura 4 mostra os principais autores que publicam sobre gráficos de controle não paramétricos. Observa-se que Chakraborti é o autor nucleador do tema NONPARAMETRIC. Esse artigo apoia-se nas pesquisas de Mukherjee & Chakraborti (2012) para o desenvolvimento de um framework para uso de gráficos de controle não paramétrico.

A próxima seção deste artigo apresenta uma revisão bibliográfica sobre controle estatístico de processo e cartas de controle sintética. A seção 3 apresenta o procedimento de pesquisa. A quarta apresenta um modelo empírico para estimativa dos limites de controle, ilustra a aplicação do gráfico de controle não paramétrico proposto e discute a validação do modelo.

Nas seções seguintes, compara-se o desempenho do gráfico de controle proposto, em relação às cartas de Shewhart, e analisam-se as melhores condições das variáveis m e n por meio da técnica de superfície de resposta.

2 Fundamentação teórica

2.1 Conceitos básicos de CEP

Controle estatístico da qualidade, segundo Montgomery (2004), é um conjunto de técnicas estatísticas utilizadas na medição, monitoramento, controle e melhoria da qualidade. O CEP é uma das técnicas clássicas do controle estatístico da qualidade e seu pressuposto é que uma variação inerente ao processo, denominada de variação natural, a qual, em geral, tem como causas muitas variáveis que produzem individualmente pequenos efeitos e são difíceis de serem detectas e eliminadas. Por outro lado, as causas especiais que produzem grandes efeitos; elas são poucas e mais fáceis de serem detectadas (Woodall, 2000; Michel & Fogliatto, 2002; Montgomery & Runger, 2003). A distinção entre causa comum e causa especial é dependente do contexto - uma causa comum hoje pode ser uma causa comum amanhã o que pode afetar o processo de amostragem (Woodall, 2000). Do ponto de vista prático, deve-se agir sobre a causa quando esta tem suficiente impacto econômico sobre a qualidade (Woodall, 1985, 2000).

Figura 2. Número acumulado de Publicações sobre gráficos de controle não paramétricos. Fonte: Dados de pesquisa.

Figura 3. Coocorrência de palavras-chave sobre controle estatístico não paramétrico. Fonte: Dados de pesquisa.

Figura 4. Redes de pesquisadores que publicam sobre gráficos de controle não paramétricos. Fonte: Dados de pesquisa.

Um processo sobre o qual têm agido variações naturais é denominado estado estável, ou sob controle.

Por outro lado, quando o processo tem, além das variações naturais, a presença de causas especiais ou assinaláveis, este estaria fora de controle. A implantação de gráficos de controle é feita em duas fases: na fase I, em que se estimam os parâmetros estatísticos e se estabelecem os limites de controle; e na fase II, em que se monitora o processo. Na fase II, amostras são coletadas do processo, os parâmetros são estimados e seus valores são comparados com os limites de controle determinados na fase I (Montgomery, 2004).

O desempenho dos gráficos de controle é, em geral, avaliado por diferentes métricas a depender da fase. Como mencionado, a métrica utilizada para a avaliação do desempenho dos gráficos de controle na fase II é o ARL. Para um processo sob controle, o valor do ARL é dado por , e para um processo fora de controle, o <formula/>; em que a e ß são os erros tipo I e II, respectivamente (Montgomery, 2004).

2.2 Carta de controle não paramétrica com monitoramento simultâneo de locação e escala

Tendo como referência o trabalho de Mukherjee & Chakraborti (2012) e com base no teste não paramétrico clássico WRS (Wilcoxon Rank-Sum), proposto por Gibbons & Chakraborti (2011), que definiram a estatística de teste para a locação, T1, para uma amostra de tamanho na fase I e na fase II, utiliza-se o teste estatístico dado pela Equação 1.

<formula/>

Em que Zk = 1 quando os dados N (em que N = m+n) são provenientes de amostras independentes da fase II; e Zk = 0 quando os dados são provenientes de amostras independentes da fase I.

O teste estatístico não paramétrico para a medida de escala é o AB - Freund-Ansari-Bradley-David-Barton, T2, descrito por Gibbons & Chakraborti (2011) e calculado pela Equação 2.

<formula/>

Um processo é dito sob controle quando F(x) a distribuição de probabilidade da fase I, e G(y), a distribuição de probabilidade da fase II, forem iguais (F = G) para os parâmetros de locação e escala.

Caso contrário, o processo é dito fora de controle.

Extraindo-se U amostras de tamanho m referentes à fase I e V amostras de tamanho n da fase II, as estatísticas de testes T1 e T2 e são determinadas.

A partir desses testes estatísticos (T1 e T2), Mukherjee & Chakraborti (2012) determinaram os limites de controle H, H1 e H2 para algumas combinações de valores para m e n.

A esperança matemática e a variância da estatística T1, para um processo sob controle, são obtidas pelas Equações 3 e 4:

<formula/> <formula/>

Para a estatística T2, a esperança matemática e a variância são dadas pelas Equações 5, 6, 7 e 8, indicadas a seguir:

<formula/> <formula/> <formula/> <formula/>

IC (In Control) indica que o processo está sob controle.

Utilizando-se da carta de controle de Shewhart-Laplace (SL), Mukherjee & Chakraborti (2012) propõem um procedimento de oito passos para a construção de uma carta de controle não paramétrica.

Esse procedimento usa as estatísticas padronizadas dos testes WRS e AB (Equações 9, 10 e 11) e a estatística Si 2 (Equação 12):

<formula/> <formula/> <formula/> <formula/>

A estatística Si2 é plotada e comparada com o limite de controle H. Caso esteja abaixo do limite de controle, o processo é declarado em estado de controle; caso esteja acima, o processo é declarado fora de controle, e as estatísticas S1i e S2i são comparadas, respectivamente, com os limites de locação H1 e de escala H2 . Se ambas as estatísticas estiverem acima dos limites de controle, o processo é declarado fora de controle tanto para locação como para a escala.

Se estiver acima para um dos limites H1 ou H2 , o processo é declarado fora de controle para a locação <formula/> ou <formula/>) para a escala.

Os limites de controle H, H1 e H2 foram determinados por Mukherjee & Chakraborti (2012) para ARL0 = 500 e com diferentes valores (m,n), por meio de métodos de simulação computacional. A Tabela 1 apresenta os limites encontrados pelos autores para algumas combinações de valores de (m,n) .

Uma propriedade desses limites é a relação H = H1 + H2.

Outra propriedade é que <formula/>, que é particionado em três eventos excludentes para um processo sob controle: A- Probabilidade da locação <formula/> e a escala <formula/>; B- Probabilidade da locação <formula/> e a escala <formula/>; C - Probabilidade da locação <formula/> e a escala <formula/>. Desse modo, a probabilidade de um falso alarme a segue a seguinte relação entre esses eventos: .1+ .2 . .1.2 = a, sendo que .1 é a probabilidade de um falso positivo para a locação; .2 a probabilidade de um falso positivo para a escala; e .1.2 é a probabilidade de um falso positivo para a locação e escala, simultaneamente.

Tabela 1. Combinação e limites de controle de locação e escala.

Fonte: Mukherjee & Chakraborti (2012).

3 Procedimento de pesquisa

Para desenvolver a aplicação de gráficos de controle não paramétricos, foi seguido o procedimento de pesquisa apresentado na Figura 5. A etapa 1 inicia-se após a definição das características e os parâmetros de qualidade do produto ou processo; nesta etapa são definidas as estatísticas de testes para a medida de locação e escala, no caso os testes WRS e AB, apresentados na seção 2.

Na etapa 2, é proposto e se analisa um modelo de regressão múltipla do tipo y = ß0 + ß1m + ß2n +ß11m2 + ß22n2 + ß12mn + e; e, na etapa 3, são estimados os limites de controle H, H1 e H2. Na etapa 4, são estimados os limites de controle estatístico para diferentes valores de (m,n), de modo a ampliar o conjunto de opções de combinações de amostras nas fases I e II quando da implantação do gráfico de controle não paramétrico proposto. Na etapa 5: - valida-se o modelo empírico proposto que estima os limites de controle por meio de análises de resíduos; - avalia-se o desempenho do gráfico de controle pelo ARL, determinado por meio de métodos de simulação; - compara-se o desempenho deste gráfico com os gráficos de Shewhart com distribuição de probabilidade Normal e Exponencial, com o objetivo de identificar vantagens em relação a outros tipos de gráficos de controle.

A melhor combinação de amostras das fases I e II foram obtidas na etapa 6 utilizando-se de técnicas de superfície de resposta. O objetivo é ajustar os parâmetros (m, n) que reflitam os melhores valores de ARL em termos de m e n. Nesta etapa, também são utilizado métodos de simulação (utilizou-se o software Maple) para a obter o valor do ARL com diferentes valores de m e n. Na etapa 7, foram estimados os erros tipo I e II (a,ß) e o ARL em torno da solução ótima obtida na etapa 6. A etapa 8 analisa e compara o desempenho do gráfico em termos de ARL, m e n, com o propósito de encontrar uma solução que combine boas propriedades estatísticas com menor custo de amostragem (m, n). Por fim, na etapa 9, define-se os tamanhos de amostras na fase I (m) e fase II (n) para o gráfico proposto.

4 Estimativas dos limites de controle H, H1 e H2

4.1 Estimativas dos limites de controle

Ajustando-se aos dados da Tabela 1, um modelo de regressão linear múltipla (Equação 13) por meio do método dos mínimos quadrados, é possível estabelecer uma relação entre os parâmetros (m, n) e os limites de controle H, H1 e H2. Na presente pesquisa testou-se o seguinte modelo:

<formula/>

O limite de controle H tem relação estatisticamente significativa apenas para ß, ß11 e ß12, conforme resultados que constam na Tabela 2. Observa-se, portanto, significativa dependência de H com o tamanho da amostra na fase I. A análise de resíduo e o valor do R2 estão descritos na seção cinco e indicam adequação do modelo proposto aos dados da Tabela 1.

Figura 5. Procedimento de pesquisa. Fonte: Dados de pesquisa.

Para H1, os parâmetros estatisticamente significativos foram ß, ß1 e ß2. Para esse limite, m é significativo nos seus dois parâmetros, linear simples e quadrático, e em n é significativo no termo linear simples.

Os resultados são mostrados na Tabela 3.

Para H2, os parâmetros de m não foram identificados como estatisticamente significativos (conforme Tabela 4). Foram identificados como significativos os parâmetros de n e da interação entre n e m.

Para a determinação do limite H, as estimativas dos parâmetros de regressão de segunda ordem são fornecidas na Tabela 2, a qual mostra também o intervalo de confiança de 95% para esses parâmetros.

Usando o mesmo procedimento, foram obtidas as estimativas dos limites de controle H1 e H2 cujos resultados são apresentados nas Tabelas 3 e 4.

Para o caso das estimativas de H, H1 e H2, os modelos de regressão encontrados foram os seguintes:

<formula/> <formula/> <formula/>

Os resultados das estimativas dos limites de controle H, H1 e H2, pelo modelo proposto, estão na Tabela 5.

4.2 Ilustração do uso do gráfico de controle não paramétrico

Obteve-se num caso real uma amostra de 125 artefatos de borracha utilizados em componentes automotivos manufaturadas por um processo de conformação a quente. Foi feita a medida da espessura das peças, cuja especificação é de 1,17 a 1,37 milímetros com tolerância de ± 0,10nm em relação ao valor nominal de 1,26. O objetivo é aplicar os modelos matemáticos obtidos a partir dos resultados de Mukherjee & Chakraborti (2012) (Equações 14, 15 e 16) e determinar o tamanho da amostra na fase I (m), para a construção de uma carta de controle não paramétrica para o monitoramento simultâneo das medidas de locação e escala.

A literatura (Mukherjee & Chakraborti, 2012) e os resultados das Tabelas 2, 3 e 4 indicam que o parâmetro m é o mais importante na estimativa dos limites de controle na fase I, e n é importante na fase II. Por essas razões, quatro estratégias de controle estatístico de processo, para o uso de gráficos de controle não paramétrico, foram testadas para os seguintes valores de m(5,14,25 e 50), fixando n = 5.

Os limites de controle H, H1 e H2 e foram estimados a partir do modelo de regressão proposto. A seguir, serão analisadas essas combinações de m e n para as quatro estratégias.

a) Combinações (m = 5, n = 5) e (m = 14, n = 5)

Foi tomada na fase I uma amostra de tamanho cinco (m=5) e, subsequentemente, catorze amostras de tamanho cinco (n=5) na fase II. Aplicou-se o procedimento de oito passos de Mukherjee & Chakraborti (2012). Os limites de controle foram calculados a partir do modelo matemático proposto.

Tabela 2. Estimativa dos parâmetros do modelo de regressão para H da combinção (m,n).

Fonte: Resultados obtidos com o software Statistica 11 (StatSoft, 2013).

Tabela 3. Estimativa dos parâmetros do modelo de regressão para H1 da combinção (m,n).

Fonte: Dados de pesquisa.

Tabela 4. Estimativa dos parâmetros do modelo de regressão para H2 da combinação (m,n).

Fonte: Dados de pesquisa.

Tabela 5. Comparação entre os resultados estimados e os valores exatos.

Fonte: Dados de pesquisa.

Figura 6. (a) Estatística Si2 obtida pela combinação (m = 5, n = 5); (b) Estatística Si2 obtida pela combinação (m = 14, n = 5).

Fonte: Dados de pesquisa.

Os resultados são mostrados na Figura 6, em que a linha tracejada refere-se ao limite de controle H estimado pelo modelo matemático. Os resultados da estatística Si2, obtidos para cada uma das quinze amostras, na fase II, foram plotadas nos gráficos da Figura 6a. Aumentando o tamanho da amostra da fase I para m = 14 obteve-se a estatística Si 2, representada na Figura 6b. Do ponto de vista teórico, um tamanho da amostra maior na fase I melhora a capacidade de detecção na fase II.

b) Combinações (m = 25, n = 5 e (m = 50, n = 5)

Os resultados de m = 25 da estatística Si2 são apresentados na Figura 7a e de m = 50 é mostrado na Figura 7b. A última configuração detecta um ponto fora de controle, o que pode indicar melhor capacidade de detecção de um processo instável, ou seja, na capacidade de detecção de causas especiais na carta de controle quando m aumenta. Isso estaria de acordo com a teoria, que, por meios matemáticos, mostra os efeitos do aumento do número de amostras na fase I no desempenho dos gráficos de controle na fase II.

Foi realizada a análise da distribuição de frequência dos dados na fase I e fase II da combinação (m = 50, n = 5) , mostrada na Figura 8. A Figura 8a refere-se à distribuição dos dados obtidos na fase I e a Figura 8b mostra os dados obtidos na fase II. Observa-se que na fase II os dados se distribuem de modo mais disperso e menos simétricos em relação aos dados da fase I. Esse comportamento do processo mostra que este não está em estado de controle, como pode ser observado pelo gráfico de controle da Figura 7b.

Com os mesmos dados amostrados (125) apresentados no Apêndice A, foram construídos os gráficos Shewhart para a média e amplitude, sendo extraídas 25 amostras de tamanho n=5. Esses gráficos, mostrados na Figura 9, correspondem à fase I do procedimento clássico de construção das cartas de controle. Observa-se um aumento na dispersão, verificado no gráfico da média a partir da amostra 13, entretanto, não foi detectado nenhum ponto fora dos limites de controle, diferentemente do que foi observado no gráfico da Figura 7b.

Figura 7. (a) Estatística S2i obtida pela combinação (m = 25, n = 5); (b) Estatística S2i obtida pela combinação (m = 25, n = 5).

Fonte: Dados de pesquisa.

Figura 8. (a) Histograma da amostra da fase I; (b) Histograma das amostras da fase II. Fonte: Dados de pesquisa.

Figura 9. Gráfico de controle do tipo Shewhart considerando 25 amostras de tamanho 5. Fonte: Dados de pesquisa.

4.3 Validação estatística do modelo proposto e combinação ótima de

Segundo Gibbons & Chakraborti (2011), para grandes amostras e sujeitas a determinadas condições, a estatística de teste ()()/NNNTETTs..-.. tem distribuição de probabilidade aproximadamente normal (é a padronização do ranqueamento linear utilizado no cálculo de S1 e S2. As Figuras 10 e 11 mostram a distribuição de probabilidade dessas estatísticas, que têm distribuições aproximadamente simétricas (Gibbons & Chakraborti, 2011). A Figura 12 mostra a análise de resíduos do modelo que estima H. A interpretação da Figura 12 é que os resíduos são estáveis e seguem a distribuição normal de probabilidade; esse resultado é necessário para validar o modelo de estimativa do limite de controle proposto.

Uma das análises importante da técnica de superfície de resposta é encontrar o valor ótimo de para a melhor estimativa de H. O valor encontrado foi m = 82 e n = 12. Esses valores são mostrados na Figura 13.

Resultados similares para m = 82 e n = 12 são obtidos para H1 e H2. Esses resultados são mostrados nas Figuras 14 e 15.

As análises de resíduos para H1, mostradas na Figura 16, e para H2, mostradas na Figura 17, indicam leve desvio na normalidade dos resíduos, especialmente para H2. Ao contrário de H, em que os resíduos tiveram um comportamento simétrico à distribuição normal de probabilidade, os métodos de estimativa dos limites para locação, H1, e escala, H2, têm que ser analisados com cuidado, para avaliar o impacto desses desvios no desempenho do gráfico de controle. Cabe observar que o limite estimado de H, que combina os dois parâmetros estatísticos de locação e escala, é o utilizado no monitoramento do processo, sendo H1 e H2 objeto de análise para os efeitos sobre a medida de posição central ou na dispersão. O estudo do desempenho é então importante para verificar o nível de desempenho obtido nesse tipo gráfico, o que é apresentado na próxima seção.

5 Análise do desempenho da carta de controle não paramétrica obtida pelo modelo proposto e comparação com as cartas de Shewhart

A análise do desempenho de diferentes tipos de cartas de controle é tradicionalmente baseada no parâmetro ARL. A Tabela 6 e a Figura 18 mostram os resultados do ARL para diferentes combinações de valores de (m,n).

Foram estimados, por meio de simulação computacional, no MAPLE, os valores de ARL para t = 0,01 a 0,07. Foram realizadas 50000 simulações das cartas de controle para as combinações mostradas na Tabela 6. Os resultados mostram que o ARL diminui conforme m aumenta. Por exemplo, para a combinação (m=14, n=5) necessitará, em média, 50,84 amostras até a detecção de um ponto fora de controle; enquanto que para a combinação (m=30, n=5) serão necessárias 32,26 amostras, o que significa um desempenho superior para uma amostra de tamanho m = 30 para a fase I em comparação a m = 14.

Figura 10. Distribuição de probabilidade da estatística.

Fonte: Dados de pesquisa.

Figura 11. Distribuição de probabilidade da estatística.

Fonte: Dados de pesquisa.

Figura 12. Análise de resíduos de H. Fonte: Dados de pesquisa.

Figura 13. Valores ótimos de para H. Fonte: Dados de pesquisa.

Figura 14. Valores ótimos de para H1. Fonte: Dados de pesquisa.

Figura 15. Valores ótimos de para H2. Fonte: Dados de pesquisa.

Figura 16. Análise de resíduos de H1. Fonte: Dados de pesquisa.

Figura 17. Análise de resíduos de H2. Fonte: Dados de pesquisa.

Figura 18. Avaliação do desempenho do gráfico de controle não paramétrico. Fonte: Dados de pesquisa.

Os resultados mostrados na Tabela 6 e Figura 18 indicam que, para um processo em estado fora de controle, o desempenho dos gráficos de controle não paramétrico melhora à medida que o tamanho da amostra (m) aumenta. O desempenho dos gráficos de controle não paramétrico, quando comparado com o desempenho da carta Tipo-Shewhart, com distribuição normal, tem pior desempenho, o que significa erros a e ß maiores. Porém, quando comparado com o desempenho dos gráficos da carta Tipo-Shewhart com distribuição exponencial, melhor desempenho.

Portanto, a carta de controle não paramétrico tem melhor desempenho que o gráfico de controle clássico quando a distribuição de probabilidade dos dados é desconhecida ou não tem distribuição de probabilidade normal.

Tabela 6. Desempenho entre a carta de controle sintética e a carta de controle tipo Shewhart (T-S).

Fonte: Dados de pesquisa.

Tabela 7. Erros tipo (I, II) e ARL para o gráfico de controle não paramétrico cujos limites foram obtidos a partir dos modelos matemáticos.

6 Análise das melhores condições das variáveis

Nesta seção, são avaliados os erros tipo I e II (a e ß) e o desempenho ARL da carta de controle não paramétrica, cujos limites de controle foram obtidos pelas Equações 14, 15 e 16. Os resultados dessa análise são mostrados na Tabela 7, cujos valores foram obtidos por meio de simulação do processo industrial analisado nas seções anteriores. Foram executados 10.000 ciclos para cada combinação apresentada na Tabela 7 para t = 0, considerando o processo em estado de controle, e t = 0,01..0,07 quando o processo está fora de controle.

Para a condição das variáveis (m = 80, n = 10) obtidas na seção anterior, obteve-se um bom desempenho do gráfico de controle quando t = 0,03; por exemplo, para t = 0,03 , o ARL = 1,39; porém, quando se usa a combinação (m=50, n=20), o resultado obtido é mais interessante, ARL=1,04. Diferentes resultados obtidos pelo método de estimação de H, H1 e H2 proposto neste trabalho são mostrados na Tabela 7. Portanto, a melhor combinação encontrada para esses limites de controle foi m = 50, na fase I, e n = 20, para a fase II.

Analisando os resultados, observamos que, quanto maior o n, menor é o erro ß, por conseguinte, melhor é a capacidade de detecção de uma causa especial.

Por exemplo, para m = 50 e n = (5, 10, 20), encontramos ARL = (2,60; 1,45; 1,04) quando t = 0,03. O erro a (lado esquerdo da Tabela 7), encontrado por meio da simulação, é de a = 0,002 a 0,007, para um ARL =140,8 a 500,0.

7 Conclusões

A carta de controle não paramétrica, com monitoramento simultâneo das medidas de locação e escala, é uma alternativa aos métodos clássicos de controle estatístico. São vantagens desse tipo de carta: permitir com um único parâmetro avaliar o estado de controle da variância e da média de uma característica de um produto ou processo; é mais robusta, pois apresenta melhor desempenho em termos de ARL do que as cartas Tipo-Shewhart para distribuicões assimétricas.

Em geral, e em especial para esse tipo de carta de controle, a fase I tem grande importância na fase II da implantação do CEP. A Tabela 6 e a Figura 18 mostram melhor desempenho do gráfico de controle na fase II para valores de m relativamente maiores.

Portanto, quando maior o tamanho da amostra na fase I, melhor será o desempenho do gráfico de controle, medido pelo ARL.

O modelo proposto estima os limites de controle de gráficos sintéticos não paramétrico. Do ponto de vista prático, o modelo de regressão linear múltiplo, ajustado aos dados da Tabela 1, permite estimar os limites de controle com combinações (m,n) diferentes das apresentadas por Mukherjee & Chakraborti (2012).

Quando se compara o desempenho da carta de controle sintética não paramétrica, com os limites de controle estimados, com a carta de controle clássica de Shwehart, observa-se melhor desempenho desta última. Porém, os resultados mostraram melhor desempenho da carta sintética não paramétrica quando a distribuição dos dados é assimétrica.

Os resultados mostraram também que o parâmetro m tem maior importância no desempenho do gráfico de controle não paramétrico, conforme mostra a Tabela 7. Os métodos de busca de soluções ótimas aplicados indicam m = 82 e n = 12, entretanto ao simular diversas combinações, encontrou-se um desempenho satisfatório do gráfico de controle para m = 50 e n = 20 , sugerido para esse tipo de carta.

A literatura nos mostra que uma regra teórica para o uso de gráficos de controle, constituída das fases I e II, em que se associa testes de hipóteses como ingrediente essencial para o sucesso na aplicação desses gráficos. Segundo Woodall (2000), a forma da distribuição subjacente e o grau de autocorrelação dos dados tornou-se um importante componente na interpretação dos gráficos de controle, na fase I, quando da estimativa dos limites de controle, e na fase II, na avaliação de seu desempenho. Assim, o estudo do desempenho dos gráficos de controle é importante como um insight de como os gráficos de controle se comportam na prática.

Os métodos tradicionais de gráficos de controle são ainda aplicáveis em muitas situações práticas da indústria, entretanto é importante considerar novos desenvolvimentos de métodos de gráficos de controle que se adapte às novas condições ambientais da indústria manufatureira.

Apêndice A. Dados amostrados num caso real: 25 amostras de tamanho n=5.

Fonte: Dados de pesquisa.


transferir texto