APLICAÇÃO DA METODOLOGIA DE MODELOS MISTOS (REML/BLUP) NA ESTIMAÇÃO DE
COMPONENTES DE VARIÂNCIA E PREDIÇÃO DE VALORES GENÉTICOS EM PUPUNHEIRA (Bactris
gasipaes)
APLICAÇÃO DA METODOLOGIA DE MODELOS MISTOS (REML/BLUP) NA ESTIMAÇÃO DE
COMPONENTES DE VARIÂNCIA E PREDIÇÃO DE VALORES GENÉTICOS EM PUPUNHEIRA (Bactris
gasipaes)1
INTRODUÇÃO
O maior uso da pupunha por habitantes da Amazônia é o do fruto, que é consumido
diretamente após o cozimento em água com sal ou no preparo de várias iguarias.
Os frutos são também utilizados para ração animal e para obtenção de farinha,
que é utilizada na fabricação de pães e bolos. Porém, o palmito é o principal
motivo do plantio da pupunha em larga escala atualmente (Souza & Silva,
2000). O conhecimento da variabilidade genética associada à principal população
de pupunha usada comercialmente no Brasil é de suma importância, tanto para os
plantios visando à produção de frutos, quanto à de palmito.
O interesse pela pupunheira, além de ser uma cultura perene, são: crescimento a
pleno sol, precocidade, rusticidade, perfilhamento, palatabilidade e não-
escurecimento do palmito após o corte (Bovi, 1998; Tonef et al., 1999). O
aumento da produtividade de palmito em cada ciclo de seleção constitui a meta
principal dos programas de melhoramento, necessitando para isso extensivas e
demoradas avaliações de progênies em condições de campo. Portanto, estimações
precisas dos componentes de variância são importantes para a predição de
valores genéticos e para maximizar a acurácia da seleção em programas de
melhoramento da pupunheira. Neste contexto, métodos diferenciados de estimação
e predição são necessários, em função das diferentes situações experimentais e
do balanceamento associados aos dados experimentais (Resende et al., 1993-
1996).
De maneira genérica, o procedimento ótimo de estimação/predição no melhoramento
de espécies perenes é o REML/BLUP (máxima verossimilhança restrita/melhor
predição linear não viciada). Entretanto, para o caso de dados balanceados, a
estimação de componentes de variância pelo método de quadrados mínimos (análise
de variância) equivale à estimação por REML (Resende et al., 1996), e a
predição de valores genéticos pelo método do índice multi-efeitos (Resende
& Higa, 1994) equivale ao BLUP individual, conforme demonstrado por Resende
& Fernandes (1999).
Assim, os procedimentos ótimos de estimação/predição podem ser resumidos em
dois: (i) análise de variância/índice multi-efeitos para o caso balanceado;
(ii) REML/BLUP para os casos desbalanceado e balanceado. No caso de dados
balanceados, os dois procedimentos conduzem a resultados idênticos; em casos
com pequeno desbalanceamento, os dois procedimentos conduzem a resultados
similares e, na presença de grande desbalanceamento, o procedimento (ii) é
muito superior ao (i).
Estimativas de parâmetros genéticos em pupunheira são escassas. Farias Neto
(1999) relata as seguintes estimativas para a herdabilidade individual no
sentido restrito: 0,37; 0,30; 0,35; 0,21 e 0,30 para os caracteres altura da
planta, diâmetro do colo, comprimento do palmito, diâmetro do palmito e peso do
palmito líquido, respectivamente, aos 15 meses de idade. Clement (1995) e
Clement & Bovi (1999) relatam as seguintes estimativas de herdabilidade no
sentido restrito: 0,27 a 0,36 para a presença de espinhos no pecíolo/ráquis;
0,49 para a taxa de crescimento relativo da fase de viveiro ao primeiro corte;
0,11 para a razão de área foliar. Estimativas de parâmetros genéticos para
outros caracteres ou para os mesmos caracteres em outras idades de avaliação
são essenciais para o direcionamento dos programas de melhoramento da espécie.
Com base no exposto, o presente trabalho teve como objetivos a estimação de
componentes de variância, herdabilidade e predição de valores genéticos para
vários caracteres em teste de progênies de pupunheira. Visou também à
comparação entre os procedimentos REML/BLUP e análise de variância no processo
de estimação.
MATERIAL E MÉTODOS
Material experimental
O teste de progênies de meios-irmãos de pupunheiras foi instalado em janeiro de
1998 no Campo Experimental do Matapi, Município de Porto Grande-AP, pertencente
ao Centro de Pesquisa Agroflorestal do Amapá - CPAF/AP. As 31 progênies são
oriundas do Centro Nacional de Pesquisa da Amazônia Ocidental - CPAA, Manaus.
As sementes foram obtidas a partir de matrizes sem espinhos, e a base genética
original da população é estreita(Clement & Bovi, 1999). A área apresenta
topografia plana, cobertura com vegetação de capoeira, clima tipo Ami, segundo
a classificação de Köppen, com temperatura média anual de 27ºC, umidade
relativa do ar média de 82% e precipitação média anual de 2.700 mm. As
características químicas do solo da área experimental são apresentadas na
Tabela_1.
As progênies foram avaliadas em experimento delineado em blocos ao acaso, com
três repetições, parcelas lineares de cinco plantas, espaçadas de 2,0 m x 1,0 m
e bordadura composta por uma fileira em torno do experimento. Avaliadas aos 26
meses (2ª avaliação), foram obtidos dados de altura da planta-AP (medida do
solo até o ponto de inserção da folha guia e a primeira folha expandida),
diâmetro da planta à altura do colo (DPC), tamanho do palmito- TP (soma do
número de toletes de 9 cm), diâmetro do palmito- DP (medido na porção mediana
do palmito líquido) e pesos do resíduo apical (PRA), basal (PRB) e do palmito
líquido- PP (palmito tipo exportação). Os dados obtidos caracterizaram-se como
desbalanceados.
Estimativas de componentes de variância e predição de valores genéticos:
Na situação de dados desbalanceados, o modelo linear misto adequado para a
descrição dos dados equivale a:
y = Xf + Za + Wc + e, em que:
y , f, a, c, e ¾ vetores de dados, de efeitos fixos (médias de blocos), de
efeitos aditivos (aleatório), de efeitos de parcelas (efeitos aleatórios de
ambiente comum das parcelas) e de erros aleatórios, respectivamente.
X, Z e W ¾ são matrizes de incidência conhecidas, formadas por valores 0 e 1,
as quais associam as incógnitas f, a e c ao vetor de dados y, respectivamente.
A metodologia de modelos mistos permite estimar f pelo procedimento de
quadrados mínimos generalizados e predizer a e c pelo procedimento BLUP. Para
obtenção destas soluções, basta resolver o seguinte sistema de equações
lineares, o qual é denominado equações de modelo misto (MME):
em que:
A e I = matrizes de parentesco genético aditivo e matriz identidade de ordem
apropriada aos dados, respectivamente.
Atribuindo-se valores iniciais para os componentes de variância nas MME, obtêm-
se as predições para os efeitos a e c. Calculando-se as variâncias desses
efeitos preditos, obtêm-se as estimativas de variâncias
(variância genética aditiva) e
(variância entre parcelas), as quais, provavelmente, serão diferentes dos
valores iniciais utilizados nas MME, significando que os valores iniciais não
foram plausíveis ou verossímeis. Desta forma, deve-se resolver novamente as
MME, usando estes componentes de variância calculados. Procedendo-se
sucessivamente desta maneira, atinge-se a convergência para os componentes de
variância, ou seja, têm-se que os valores utilizados nas MME equivalem às
próprias variâncias dos efeitos preditos, significando que os valores
utilizados nas MME passaram a ser plausíveis ou verossímeis com o conjunto de
dados. Este é o princípio da verossimilhança.
Os estimadores REML para obtenção das variâncias dos efeitos aleatórios,
empregando-se o algoritmo EM (Expectation-Maximization) são:
tr = operador traço matricial;
r(x) = posto da matriz X;
N-r(x) = número de graus de liberdade do erro;
q = número de indivíduos;
s = número de parcelas;
N = número total de dados.
C22 e C33 provêm de:
As estimações e predições pelo procedimento REML/BLUP foram realizadas
empregando-se o software DFREML (Meyer, 1998).
Para o método tradicional, baseado na análise de variância, empregou-se o
software SELEGEN (Resende & Oliveira, 1997), o qual utiliza os estimadores
da variância apresentados por Vencovsky & Barriga (1992).
Predição de ganhos genéticos
Os valores genéticos foram preditos pelo vetor â, como desvios da média geral
do experimento. Assim, o ganho genético predito foi estimado fazendo-se a média
dos valores genéticos dos indivíduos selecionados. Com base nos valores
genéticos individuais preditos, os ganhos genéticos preditos com a prática da
seleção para peso de palmito foram estimados admitindo-se duas estratégias de
seleção: 31 indivíduos (pertencentes a 9 progênies), representando a população
de produção de sementes (simulando programa em curto prazo) e com 53 indivíduos
(pertencentes a 15 progênies), para compor a população de melhoramento
(simulando programa a médio e longo prazos). O tamanho efetivo (Ne) foi
estimado pela expressão fornecida por Resende & Bertolucci (1995).
RESULTADOS E DISCUSSÃO
O número de famílias e indivíduos selecionados, intensidade de seleção, ganho
genético esperado, média esperada e tamanho efetivo com o emprego das
estratégias de seleção a curto e longo prazos são apresentados na Tabela_2.
Verificam-se baixos ganhos genéticos esperados com valores semelhantes
considerando as duas modalidades de seleção. A prática da seleção elevaria a
média da população para o caráter peso de palmito após um ciclo de seleção de
227 g para 243 e 246 g para curto e longo prazos, respectivamente.
A determinação do número adequado de indivíduos a serem selecionados deve
considerar a endogamia na geração de plantio, para a composição da população de
produção de sementes e a manutenção de um tamanho populacional efetivo
compatível com a obtenção do limite seletivo para a composição da população de
melhoramento (Resende & Bertolucci, 1995). No presente trabalho, maximizou-
se o ganho, preestabelecendo um tamanho efetivo mínimo de 19 e 30,38 para a
composição das populações de produção de sementes e de melhoramento,
respectivamente. Como as duas estratégias conduziriam praticamente ao mesmo
ganho genético e tendo em vista a baixa variação genética na população,
recomenda-se apenas a utilização da estratégia de curto prazo e posterior
cruzamento dos indivíduos selecionados com indivíduos selecionados em outras
populações, visando a gerar uma nova população com maior variabilidade genética
aditiva.
As estimativas de herdabilidade no sentido restrito (Tabela_3) são consideradas
baixas, revelando baixa variação genética aditiva na população e,
conseqüentemente, a estimação de ganhos genéticos de pequena magnitude. Uma
possível causa para as baixas estimativas de herdabilidade pode ser a estreita
base genética da população, haja vista que as progênies são provenientes de
número reduzido de plantas.
As estimativas dos componentes de variância e herdabilidade obtidas pelos
métodos da análise de variância (ANOVA) e REML encontram-se na Tabela_3. As
estimativas foram divergentes para os dois procedimentos. Observam-se
estimativas negativas de componentes de variância quando se utiliza a ANOVA,
resultado normalmente observado quando o valor paramétrico do componente de
variância é próximo de zero. Neste caso, o procedimento REML, que apresenta
restrição de não-negatividade, conduz a melhores resultados. Exceto para os
caracteres DP, TP e PP, os dois procedimentos conduziram a herdabilidades muito
diferentes, revelando que o procedimento REML deve ser utilizado em casos de
dados desbalanceados.
CONCLUSÕES
1 - A população de pupunheira estudada apresenta baixa variabilidade genética
aditiva, o que a torna inadequada para futuros trabalhos de melhoramento a
longo prazo.
2 - Os ganhos genéticos esperados para produção de palmito foram de 8,40 e
7,18% para as condições de curto e longo prazos.
3 - Os procedimentos REML e ANOVA conduziram a resultados divergentes para a
maioria dos caracteres.
4 - O procedimento REML/BLUP deve ser o preferido para a estimação/predição no
melhoramento de plantas perenes, cujos experimentos, em geral, geram dados
desbalanceados.